24 research outputs found

    Global Disruption of α2A Adrenoceptor Barely Affects Bone Tissue but Minimizes the Detrimental Effects of Thyrotoxicosis on Cortical Bone

    Get PDF
    Evidence shows that sympathetic nervous system (SNS) activation inhibits bone formation and activates bone resorption leading to bone loss. Because thyroid hormone (TH) interacts with the SNS to control several physiological processes, we raised the hypothesis that this interaction also controls bone remodeling. We have previously shown that mice with double-gene inactivation of α2A- and -adrenoceptors (α2A/2C-AR−/−) present high bone mass (HBM) phenotype and resistance to thyrotoxicosis-induced osteopenia, which supports a TH-SNS interaction to control bone mass and suggests that it involves α2-AR signaling. Accordingly, we detected expression of α2A-AR, α2B-AR and α2C-AR in the skeleton, and that triiodothyronine (T3) modulates α2C-AR mRNA expression in the bone. Later, we found that mice with single-gene inactivation of α2C-AR (α2C-AR−/−) present low bone mass in the femur and HBM in the vertebra, but that both skeletal sites are resistant to TH-induce osteopenia, showing that the SNS actions occur in a skeletal site-dependent manner, and that thyrotoxicosis depends on α2C-AR signaling to promote bone loss. To further dissect the specific roles of α2-AR subtypes, in this study, we evaluated the skeletal phenotype of mice with single-gene inactivation of α2A-AR (α2A-AR−/−), and the effect of daily treatment with a supraphysiological dose of T3, for 4 or 12 weeks, on bone microarchitecture and bone resistance to fracture. Micro-computed tomographic (μCT) analysis revealed normal trabecular and cortical bone structure in the femur and vertebra of euthyroid α2A-AR−/− mice. Thyrotoxicosis was more detrimental to femoral trabecular bone in α2A-AR−/− than in WT mice, whereas this bone compartment had been previously shown to present resistance to thyrotoxicosis in α2C-AR−/− mice. Altogether these findings reveal that TH excess depends on α2C-AR signaling to negatively affect femoral trabecular bone. In contrast, thyrotoxicosis was more deleterious to femoral and vertebral cortical bone in WT than in α2A-AR−/− mice, suggesting that α2A-AR signaling contributes to TH actions on cortical bone. These findings further support a TH-SNS interaction to control bone physiology, and suggest that α2A-AR and α2C-AR signaling pathways have key roles in the mechanisms through which thyrotoxicosis promotes its detrimental effects on bone remodeling, structure and resistance to fracture

    Abnormal thyroid hormone status differentially affects bone mass accrual and bone strength in C3H/HeJ mice: a mouse model of type I deiodinase deficiency

    Get PDF
    C3H/HeJ (C3H) mice are deficient of type I deiodinase (D1), an enzyme that activates thyroid hormone (TH), converting thyroxine (T4) to triiodothyronine (T3). Nevertheless, C3H mice present normal serum T3 and a gross euthyroid phenotype. To investigate if a global D1 deficiency interferes in the TH effects on bone, we compared bone growth, bone mass accrual and bone strength of C3H and C57BL/6J (B6) mice under abnormal TH status. Four-week-old female mice of both strains were grouped as Euthyroid, Hypothyroid (pharmacologically-induced), 1xT4 and 10xT4 (hypothyroid animals receiving 1- or 10-fold the physiological dose of T4 /day/16 weeks). Hypothyroidism and TH excess similarly impaired body weight (BW) gain and body growth in both mice strains. In contrast, whereas hypothyroidism only slightly impaired bone mineral density (BMD) accrual in B6 mice, it severely impaired BMD accrual in C3H mice. No differences were observed in serum and bone concentrations of T3 between hypothyroid animals of both strains. Interestingly, treatment with 10xT4 was less deleterious to BMD accrual in C3H than in B6 mice and resulted in less elevated T3 serum levels in B6 than in C3H mice, which is probably explained by the lower D1 activity in C3H mice. In addition, hypothyroidism decreased bone strength only in C3H but not in B6 mice, while TH excess decreased this parameter in both strains. These findings indicate that D1 deficiency contributes to the TH excess-induced differences in bone mass accrual in C3H vs. B6 mice and suggest that deiodinase-unrelated genetic factors might account for the different skeleton responses to hypothyroidism between strains

    The Monocarboxylate Transporter 8 and L-Type Amino Acid Transporters 1 and 2 Are Expressed in Mouse Skeletons and in Osteoblastic MC3T3-E1 Cells

    No full text
    Background: Several plasma membrane transporters have been shown to mediate the cellular influx and/or efflux of iodothyronines, including the sodium-independent organic anion co-transporting polypeptide 1 (OATP1), the sodium taurocholate co-transporting polypeptide (NTCP), the L-type amino acid transporter 1 (LAT1) and 2 (LAT2), and the monocarboxylate transporter 8 (MCT8). The aim of this study was to investigate if the mRNAs of these transporters were expressed and regulated by thyroid hormone (TH) in mouse calvaria-derived osteoblastic MC3T3-E1 cells and in the fetal and postnatal bones of mice. Methods: The mRNA expression of the iodothyronine transporters was investigated with real-time polymerase chain reaction analysis in euthyroid and hypothyroid fetuses and litters of mice and in MC3T3-E1 cells treated with increasing doses of triiodothyronine (T(3); 10(-10) to 10(-6) M) or with 10(-8) M T(3) for 1-9 days. Results: MCT8, LAT1, and LAT2 mRNAs were detected in fetal and postnatal femurs and in MC3T3-E1 cells, while OATP1 and NTCP mRNAs were not. LAT1 and LAT2 mRNAs were not affected by TH status in vivo or in vitro or by the stage of bone development or osteoblast maturation (analyzed by the expression of osteocalcin and alkaline phosphatase, which are key markers of osteoblastic differentiation). In contrast, the femoral mRNA expression of MCT8 decreased significantly during post-natal development, whereas MCT8 mRNA expression increased as MC3T3-E1 cells differentiated. We also showed that MCT8 mRNA was up-regulated in the femur of hypothyroid animals, and that it was down-regulated by treatment with T(3) in MC3T3-E1 cells. Conclusions: This is the first study to demonstrate the mRNA expression of LAT1, LAT2, and MCT8 in the bone tissue of mice and in osteoblast-like cells. In addition, the pattern of MCT8 expression observed in vivo and in vitro suggests that MCT8 may be important to modulate TH effects on osteoblast differentiation and on bone development and metabolism.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[05/52910-4]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[03/07327-3](CAPES) Coordenadoria de Aperfeicoamento de Pessoal de Nivel Superior, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[05/59557-8

    Deiodinase-mediated thyroid hormone inactivation minimizes thyroid hormone signaling in the early development of fetal skeleton

    No full text
    Thyroid hormone (TH) plays a key role on post-natal bone development and metabolism, while its relevance during fetal bone development is uncertain. To Study this, pregnant once were made hypothyroid and fetuses harvested at embryonic days (E) 12.5, 14.5, 16.5 and 18.5. Despite a marked reduction in fetal tissue concentration of both T4 and T3, bone development, as assessed at the distal epiphyseal growth plate of the femur and vertebra, was largely preserved Lip to E16.5. Only at E18.5, the hypothyroid fetuses exhibited a reduction in femoral type I and type X collagen and osteocalcin mRNA levels, in the length and area of the proliferative and hypertrophic zones, in the number of chondrocytes per proliferative column, and in the number of hypertrophic chondrocyres, in addition to a slight delay in endochondral and intramembranous ossification. This Suggests that LIP to E 16.5, thyroid hormone signaling in bone is kept to a minimum. In fact, measuring the expression level of the activating and inactivating iodothyronine deiodinases (D2 and D3) helped understand how this is achieved. D3 mRNA was readily detected as early as E14.5 and its expression decreased markedly (similar to 10-fold) at E18.5, and even more at 14 days after birth (P14). In contrast. D2 mRNA expression increased significantly by E18.5 and markedly (similar to 2.5-fold) by P14. The reciprocal expression levels of D2 and D3 genes during early bone development along with the absence of a hypothyroidism-induced bone phenotype at this time Suggest that coordinated reciprocal deiodinase expression keeps thyroid hormone signaling in bone to very low levels at this early stage of bone development. (c) 2008 Elsevier Inc. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[04/01833]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[03/07327-3]Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPE

    The Thyroid Hormone Receptor (TR) beta-Selective Agonist GC-1 Inhibits Proliferation But Induces Differentiation and TR beta mRNA Expression in Mouse and Rat Osteoblast-Like Cells

    No full text
    Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta 1 over TR alpha 1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TR alpha 1 than TR beta 1 mRNA in rat (similar to 20-90%) and mouse (similar to 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TR alpha 1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TR beta 1 mRNA expression increases (similar to 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TR beta 1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TR beta 1 mRNA expression to a similar extent in both cell lineages (similar to 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TR beta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[05/52910-4]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[03/07327-3]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[05/59557-8]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil[06/52982-8]NIH[DK52798]U.S. National Institutes of Health (NIH)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPE

    Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene

    No full text
    We report the phenotype of mice with targeted disruption of the Trpv6 (Trpv6 KO) epithelial calcium channel. The mice exhibit disordered Ca(2+) homeostasis, including defective intestinal Ca(2+) absorption, increased urinary Ca(2+) excretion, decreased BMD, deficient weight gain, and reduced fertility. Although our Trpv6 KO affects the closely adjacent EphB6 gene, the phenotype reported here is not related to EphB6 dysfunction. INTRODUCTIOn: The mechanisms underlying intestinal Ca(2+) absorption are crucial for overall Ca(2+) homeostasis, because diet is the only source of all new Ca(2+) in the body. Trpv6 encodes a Ca(2+)-permeable cation channel responsible for vitamin D-dependent intestinal Ca(2+) absorption. Trpv6 is expressed in the intestine and also in the skin, placenta, kidney, and exocrine organs. MATERIALS AND METHODS: To determine the in vivo function of TRPV6, we generated mice with targeted disruption of the Trpv6 (Trpv6 KO) gene. RESULTS: Trpv6 KO mice are viable but exhibit disordered Ca(2+) homeostasis, including a 60% decrease in intestinal Ca(2+) absorption, deficient weight gain, decreased BMD, and reduced fertility. When kept on a regular (1% Ca(2+)) diet, Trpv6 KO mice have deficient intestinal Ca(2+) absorption, despite elevated levels of serum PTH (3.8-fold) and 1,25-dihydroxyvitamin D (2.4-fold). They also have decreased urinary osmolality and increased Ca(2+) excretion. Their serum Ca(2+) is normal, but when challenged with a low (0.25%) Ca(2+) diet, Trpv6 KO mice fail to further increase serum PTH and vitamin D, ultimately developing hypocalcemia. Trpv6 KO mice have normal urinary deoxypyridinoline excretion, although exhibiting a 9.3% reduction in femoral mineral density at 2 months of age, which is not restored by treatment for 1 month with a high (2%) Ca(2+) "rescue" diet. In addition to their deranged Ca(2+) homeostasis, the skin of Trpv6 KO mice has fewer and thinner layers of stratum corneum, decreased total Ca(2+) content, and loss of the normal Ca(2+) gradient. Twenty percent of all Trpv6 KO animals develop alopecia and dermatitis. CONCLUSIONS: Trpv6 KO mice exhibit an array of abnormalities in multiple tissues/organs. At least some of these are caused by tissue-specific mechanisms. In addition, the kidneys and bones of Trpv6 KO mice do not respond to their elevated levels of PTH and 1,25-dihydroxyvitamin D. These data indicate that the TRPV6 channel plays an important role in Ca(2+) homeostasis and in other tissues not directly involved in this process
    corecore